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profile data are sufficiently accurate and complete 
along the tail regions, this approach is preferred 
because additional information about the column- x 
height distribution is obtained. This, of course, is 
made possible by the introduction of the variation 
coefficient and is illustrated by the following experi- 
mental example. 

The line profiles from the 200 and 400 reflections 
were obtained from the wear debris of a partially 
stabilized zirconia sample. These profiles were used 
to determine the average column height, variation 
coefficient of the column-height distribution and the 
amount of microstrain present in the sample. The 
instrumental parameters, a~ and as, were determined 
by least-squares fitting the line shape of the 110 and 
211 reflections from an Mo powder standard to the 
Voigt function. A high-resolution diffractometer with 
a quartz monochromator was used to obtain the line 
shape experimentally. This effectively eliminated the 
Ka2 component of the Cu Ka doublet. A least-× 
squares fit using (14) for the line broadening of the 
200 and 400 reflections indicated that the average 
column length is 86/~, the variation coeflicient of the 
column-height distribution is 0.51 and the non-5< 
uniform r.m.s, strain component, (e2D) 1/2, which can 
be attributed to dislocations, is equal to 0.022 (see 
Fig. 1). The non-uniform strain component, (e2u) 1/2, 
was found to be insignificant or zero. The magnitude 
of the strain component, (e2o) 1/2, is surprisingly close 
to that found in cold-worked metals and metal films, 
indicating a high density of dislocations in partially 
stabilized zirconia wear debris. If it is assumed that 
the geometrical arrangement of dislocations is statisti- 
cally spherical, a variation coefficient of 0.51 indicates 
that the dislocations that define the subgrains are not 
uniform in size. A least-squares fit of the experimental 
line shape with the single-sphere model (9) showed 
significant misfit in the first-order reflection, which is 
most influenced by subgrain size. Therefore, we must 

conclude that a distribution of spherical subgrains is 
in best agreement with the data. Also, it must be 
further concluded that the more complete analysis 
using (12) and (14) provides a more accurate analysis 
of subgrain size and strain. It was found that the 
particle size obtained using the single-sphere model 
is 12% larger while (e2o) 1/2 is 5% larger than the 
results obtained using the more complete analysis 
that includes the variation coefficient. For some appli- 
cations these differences may not be important; 
however, information on subgrain-size distribution is 
lost. 

The funding for the theoretical development of this 
paper was made available by National Science 
Foundation Grant No. DMR-8000933. Funding for 
the data collection of the partially stabilized wear 
debris as well as the sample preparation was derived 
from a DOE Energy Conversion and Utilization 
Technologies (ECUT) Program or subcontract 
19B07733C. 
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Abstract 

A new.analytical function is proposed for absorption 
correction. It is expressed by surface harmonics with 
polar angles that specify the primary and secondary 
beam directions. This function has an advantage over 
Fourier expansion because it is rotationally invariant. 
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Two empirical, methods are used to determine the 
expansion coefficients. One uses the intensity devi- 
ations of equivalent reflections, and the other uses 
the calculated intensities at the stage of structure 
refinement. The utility of the analytical function is 
demonstrated with a model and with actual data. 
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1. Introduction 

A proper treatment of the absorption effect, which 
largely influences the intensities of the diffraction 
beams, is of great importance in an accurate structure 
analysis. The absorption correction has usually been 
calculated by computer programs based on the 
Gaussian integration method (Busing & Levy, 1957). 
However, these procedures need the precise measure- 
ment of the crystal dimensions, which is not always 
easy when the crystal shape is complicated. It may 
be much more diificult when some additional 
absorber is attached to the crystal. 

In order to overcome such difficulties, empirical 
methods have been developed by Furnas (1957), 
Kopfmann & Huber (1968), Huber & Kopfmann 
(1969), North, Phillips & Mathews (1968) and Flack 
(1974). Kopfmann & Huber (1968) made the first 
attempt to apply the functional analysis to the prob- 
lem of absorption correction. These methods need 
the intensity measurements from azimuthal scanning 
with three- or four-circle diffractometers. 

We proposed a convenient method (Katayama, 
Sakabe & Sakabe, 1972a), where the function of 
absorption correction, expressed by a Fourier series, 
is evaluated using the intensity deviations of the 
equivalent reflections. An alternative method 
(Katayama, Sakabe & Sakabe, 1972b) for the evalu- 
ation of the Fourier coefficients was also proposed 
using the calculated intensities at the stage of structure 
refinement. Walker & Stuart (1983) extended the latter 
method successfully for practical use. However, two- 
dimensional Fourier expansion with the polar angles 
is not proper mathematically because the function is 
not rotationally invariant, and causes errors in correc- 
tion factors of the reflections at higher Bragg angles. 

In this paper a new analytical function is proposed, 
which employs surface harmonics, and the results of 
its test with a model and with actual data are reported. 

for the two directions, A'(ph) and A ' ( S  h) .  Empirically, 
this formulation has been used successfully for many 
applications (North, Phillips & Mathews, 1968; 
Katayama, Sakabe & Sakabe, 1972a, b, Walker & 
Stuart, 1983). 

Instead of a Fourier series (Katayama, Sakabe & 
Sakabe, 1972a), we propose the following function 
for A*: 

A*(p , s )=  ~ ~ (C,, , , ,P'~(sinvp)cosmq~ 
n=0 m=0 

+ S,,,,P~(sin vp) sin mq~p 

+ C,,,,,P~'(sin ~'s) cos mq~s 

+ S.mP."(sin vs) sin mq~), (3) 

where P~' is the associated Legendre function, vp, 
~0~, us and q~ are the polar angles referring to the 
directions p and s as shown in Fig. 1, and C,,, and 
Sn,,, are the expansion coefficients to be determined 
by either of the two methods mentioned below. The 
series will converge rapidly, since the absorption 
varies smoothly in these directions. This formula 
satisfies the physical requirement that the absorption 
does not change when the X-ray travels the reverse 
path. 

The morphological symmetry of the crystal reduces 
the number of expansion terms; for example, C.., = 
S.,. = 0 when n + m = odd if there is a mirror perpen- 
dicular to the ~o axis. Also C.,. = S.,. = 0 when m = 
odd if there is a twofold symmetry parallel to the ~o 
axis. Similarly, C.m = S.m = 0 when n = odd if there 
is a center of symmetry. S.o are always zero, and 
S.., = 0 if there is a mirror parallel to the ~o axis at 
~o =0  °. 

When the above-mentioned conditions are expec- 
ted, a transformation of the coordinate may be 
required to represent the morphological symmetry. 

2. Analytical function 

The absorption correction factor A is defined as 

Ih=A(h)I°h, (1) 

where Ih and I ° are the corrected and the observed 
intensities of the reflection h, respectively. The factor 
A varies with the directions of the primary beam p 
and the secondary beam s if the crystal has an 
arbitrary shape. The absorption correction has been 
described as a product of two terms, 

a (h)  ~- A°( Oh)A*(ph, Sh) 

"" a°(  Oh )(A'(~h ) + A'(Sh ) ), (2) 

where A ° is the spherical part depending only on the 
Bragg angle Oh and A* is the part depending on the 
directions of the primary and secondary beams. The 
latter part is expressed by the sum of the contributions 

q~ 

P 

Fig. I. Definit ion of  the angles q¥, ~,p, ~0s and u~. 
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The reduction of the expansion terms is more advan- 
tageous than keeping the angular symmetry of the 
primary and secondary beam directions. 

The systematic lack of data, such as the diffraction 
data measured by Mo radiation within the limited 20 
angle, leads to correlations among the expansion 
terms since the orthogonality among the terms is not 
kept within the limited variable range. Therefore, 
when 20 maximum is 60 °, the terms, Cn, n, Cn+l,n, 
Cn+6,,, C,+7,,, and the corresponding S,m terms 
should be selected as the independent terms. If the 
diffraction data is collected in a hemisphere, a mirror 
symmetry or a center of symmetry should be assumed 
in order to extend the variable range of the function. 

A°(O) is the correction factor corresponding to the 
effect that the mean path length decreases monotoni- 
cally as the Bragg angle increases. This factor has a 
close resemblance with' the isotropic thermal factor 
as is revealed by plotting both values. Therefore' the 
factor is estimated simply from the lists of spherical 
absorption factors given in International Tables for 
X-ray Crystallography (1972) for a sphere whose 
volume is equal to that of the crystal. 

Thus the absorption correction factor A(h) could 
be expressed as a linear function of the expansion 
coefficients. 

3. Determination of the expansion coefficients 

The expansion coefficients are determined by a least- 
sqdares method, in which the squares of the differen- 
ces between the corrected and true intensities are 
minimized. Since the true intensity is unknown, 
however, it can be approximated by the following 
two methods. 

3.1. Method I 

The averaged value of the corrected intensities over 
the equivalent reflections is assumed as the true 
intensity. Then the expansion coefficients are deter- 
mined by minimizing the formula 

R I = ~  h O)hi A(h i ) I ° i - (1 /N)  ~ A(hj)I°j 
i=1 j = l  

=~h ~ tOhi A*(Phj'Shj)JhJ ( 4 )  
i=1 j =  

where 

~[(N-1)/N]A°(Ohj)I°j  w h e n j =  i 

JhJ=l,--(1/N)A°(Ohj)I°j w h e n j ~  i 

and N is the total number of equivalent reflections. 
This formula is obtained from (2) in the previous 
paper (Katayama, Sakabe & Sakabe, 1972a) by con- 
sidering the same weight for the equivalent reflections 
when they are measured under the same conditions. 
The function A* defined by (3) is represented for 

brevity as 

A*(ph, Sh) = ~, BqTq(~h, Sh), (5) 
q 

where Bq is the qth expansion coefficient and 
Tq (Ph, Sh) is the corresponding expansion component. 
Then (4) becomes 

= i=1 (6) 

The values in the brackets in (6) are all known. The 
normal equations can be solved as simultaneous 
equations by giving Coo = 1. 

3.2. Method lI 

When a structure analysis is carded out without a 
correction for absorption, the omission will cause a 
systematic error in the structure factors, which is 
related to the directions Ph and s,. Therefore the 
function A* can also be determined by minimizing 
the formula 

R2=E toh(A(h)I°- I~,} 2 
h 

= ~h O)h BqTq(~h, Sh)J°h-- I~ , (7) 

where I~ is the intensity calculated at the stage of 
structure refinement and J~ = A°( Oh ) I~. The 
expansion coefficients are determined by solving the 
normal equations and are used to correct the observed 
intensities. However, the calculated intensities may 
vary with further structure refinements after this cor- 
rection, then this process must be repeated so as to 
give a self-consistent result. 

4. Test calculation 

The availability of the analytical function was tested 
by the following procedure in order to avoid compli- 
cations due to experimental errors in measurement. 
The intensities, I° 's,  are given as the products of the 
assumed intensities and the computed transmission 
factors of the model crystal. The intensities, thus 
prepared, are corrected by method I or II, and com- 
pared with the assumed intensities. The bisecting 
setting was employed for these test, since this setting 
has been used most frequently. 

The transmission factors were calculated by the 
Gaussian integration of 6 x 6 × 6  points using a 
modification of the INCOR program in UNICS 
(1967). The shapes of four model crystals are shown 
in Fig. 2, and other assumptions are listed in Table 
1. All the crystals have non-centrosymmetdc shapes. 
Model A is a wedge-shaped crystal, B is a pyramidal 
one, C and D are rhombic crystals with the external 
absorber illustrated by shadowing in Fig. 2. The 
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Table 1. Assumptions for the model crystals 

Model  A B C D 

Absorption 
coet~cient (cm -l)  24 24 24 48 

Laue symmetry mmm mmm 3 
Directions of (0, 35) (0, 73) (22, 13) (22, 13) 

symmetry axes (60, -35) (46,-12) 
(~p, v)( °, °) ( -60 , -35 )  ( -46 , -12)  

Total number 
of reflections 1195 x 8 1195 x8 1934x6 1934x6 

absorption coefficient of the absorber is assumed to 
be the same as that of the crystal. 

The accuracy of the correction is dependent on the 
number of the expansion terms and on the number 
of reflections used for the determination of the 
coefficients. Table 2 shows the result of the test calcu- 
lation, in which 64 terms, namely n =0-7 ,  were 

z z z 

Model  A B , D 

y y [~ I 
0.2ram Y 

--~~x ~x (b) 

Fig. 2. ( a )  C o m p o s i t e  c l inographic  projec t ion o f  the mode l  crys- 
tals. (b)  View f rom the z direction.  Shaded par t  shows the 
external  absorber .  Total  vo lume  o f  absorber  is 0.012 m m  3 for  
each model .  The  z direct ion is parallel  to the ~o axis. 

Table 2. Average errors (%) of the intensities corrected 
by using the 64 terms, which were determined with 720 

reflections by method I or II 

Model  A B C D 

Method I 1.65 3.73 1-05 2.95 
Method II 1.35 1.03 0.96 2.60 

Table 3. Coefficients C,m (upper lines) and S,,, (lower 
lines) determined by method II for model D (×1000) 

n r n =  0 

0 1000 

1 51 -183 
16 

2 298 -91 -103 
50 65 

3 1 -49 1 
18 0 

4 59 -33 -8  
13 5 

5 -26 -12 2 
8 -1 

6 -17 -9  -1 
4 1 

7 -17 -3  0 
3 0 

m = l  m = 2  m = 3  m = 4  m = 5  m = 6  m = 7  

4 
-3  

1 0 
-2  -1 

0 0 
0 0 

0 0 
0 0 

0 0 
0 0 

0 
0 

0 0 
0 0 

employed. The 64 coefficients were determined with 
720 reflections, which were randomly chosen from 
the lower-angle reflections. Table 3 shows the 
coefficients determined by method II for model D. 
Continuous lines in Fig. 3 are the contour plots of 
the transmission calculated with those coefficients 
over the reciprocal levels v = - 3 0 ,  0 and 30 °. The 
dotted lines are the plots of transmission obtained 
from a previous computation by Gaussian integration. 

Y 

v = - 3 0  ° v = 0 ° v = + 3 0  ° 

Fig. 3. C o n t o u r  plots  o f  t ransmiss ion  over  the rec iprocal  levels v = - 3 0 ,  0 and  30 ° for  mode l  D. Dot ted  lines are the plots  o f  t ransmiss ion  
o f  the mode l  crystal.  Con t inuous  lines are those de te rmined  by me thod  II  and  conver ted  to the absolute  scale. The numbers  on the 
lines indicate  the values o f  t ransmiss ion  in per  cent. 
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Table 4. Results of  correction by the C R Y S T A N  
program system 

R factor (%) 
Compound Dimensions (mm) t~ (cm-1) Before After 
C22H24SesReO4 0.2 x 0.05 x 0.4 205.6 12.8 5.52 
C2t HIgN202CI213 0.4 x 0.4 x 0.4 301.6 6.27 5.42 
C2sH16SsCu2C16 0.35 x 0.05 x 0.6 209.5 23.3 5.22 
C28H16SsCu2Br6 0.13 x 0.05 x 0.02 138.7 6.61 4.31 
C2oH t2N6S4 0.18 x 0.03 x 0.38 41.2 8.11 6.28 
CtoH12S8 0.15 x0"15 x0"75 95"9 6"12 5"25 
C2oHI2N6Ss 0"09 x0"02 x 1"1 64"9 6"85 5"87 
C2oH24TesPF6 0.08 x 0.01 x 0.6 557.4 20"0 14.5 

5. Discussion 

In the previous paper (Katayama, Sakabe & Sakabe, 
1972a) the average error, defined by 

R = Z Ilassum - Icor~l/Z/assum, (8) 

was 1-4% by method I with 188x6 reflections for 
model C. In the present calculation the average error 
is improved to 1.05% with 120x 6 reflections. This 
result is due to the improvement of the functional 
form. The correction for model D, in which the 
absorption is strong (Ix = 48 cm-1), can be performed 
with an accuracy of about 3% by method I or II. 

The coefficients in Table 3 are determined by 
method II for model D, and these results indicate 
that the expansion is almost convergent by using finite 
series (n = 0-7). The contour plots, in Fig. 3, of the 
transmission calculated with these coefficients show 
an excellent agreement with those of model D. 

In model B, with Laue symmetry mmm, a two-fold 
axis tilts only 17 ° from the ~ axis, so that the beam 
directions of the equivalent reflections distribute in 
a narrow v range. The application of method I to 
such a case is difficult, because the solution of (6) is 
not well defined concerning the v dependence of the 
function. Therefore it is important to give particular 
attention to crystal mounting so that the v values of 
the equivalent reflections are widely separated. 

The applicability of method I is rather limited when 
the number of equivalent reflections is small. There- 
fore it is recommended to include Friedel pairs among 
the equivalent reflections even when anomalous 
effects are observed. The contributions of these effects 
will be non-systematic in (6), since these are indepen- 
dent of the beam directions. 

On the other hand, method II is independent of 
the number of equivalent reflections. The calculated 
structure amplitude is a function of the atomic coor- 
dinates and thermal parameters. Such parameters, 
however, are not influenced by the absorption effect 
in the procedure of the structure refinement, since 
the functional forms are quite different from that of 
the absorption effect as illustrated in Fig. 3. Only the 
isotropic thermal factor may behave similarly to the 

absorption factor for a sphere, A°(0), in (2). There- 
fore the absorption effect may remain as a systematic 
error in the observed structure amplitudes, which are 
correlated with the directions of the primary and 
secondary beams. 

In the program system C R Y S T A N  (Katayama & 
Honda, 1985), the transmission factor is expanded 
by surface harmonics in the same way as (2) and (3), 
and the expansion coefficients are determined at the 
stage of the atomic parameter refinement by minimiz- 
ing R3: 

{Fobs- T(h)F2a,} 2, (9) R3__ E 2 
h 

where Fobs and Eta  I a r e  the observed and calculated 
structure amplitudes and T(h) is the transmission 
factor. As a routine procedure, only ten terms up to 
n = 6 are employed by assuming the sample crystal 
has symmetry mmm. The results of several applica- 
tions are shown in Table 4. 

In practice a fiat crystal is a serious problem for 
the absorption effect and the systematic error in the 
structure factors is very obvious. The results show 
that the applicability is satisfactory even for such a 
crystal with only ten terms by assuming the morpho- 
logical symmetry mmm. 
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